Monoclinic	Cell parameters from 250 reflections
$P 2_{1} / a$	$\theta=2.48-24.91^{\circ}$
$a=12.928(5) \AA$	$\mu=0.305 \mathrm{~mm}^{-1}$
$b=5.546(5) \AA$	$T=150(2) \mathrm{K}$
$c=16.445(5) \AA$	Lozenge
$\beta=92.392(5)^{\circ}$	$0.22 \times 0.16 \times 0.10 \mathrm{~mm}$
$V=1178.1(12) \AA^{3}$	Yellow
$Z=4$	
$D_{x}=1.385 \mathrm{Mg} \mathrm{m}$	
D_{m} not measured	
Data collection	
Delft Instruments FAST	1152 reflections with
diffractometer	$I>2 \sigma()$
Area detector scans	$R_{\text {int }}=0.0628$
Absorption correction: none	$\theta_{\max }=24.91^{\circ}$
4719 measured reflections	$h=-14 \rightarrow 11$
1783 independent reflections	$k=-5 \rightarrow 6$
	$l=-16 \rightarrow 18$

Refinement

Refinement on F^{2}
$R(F)=0.033$
$w R\left(F^{2}\right)=0.0708$
$S=0.736$
1780 reflections
156 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0221 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.04$
$\Delta \rho_{\text {max }}=0.18 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.15 \mathrm{e}^{-3}$
Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Cl}-\mathrm{C} 5$	$1.745(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.437(3)$
$\mathrm{O}-\mathrm{C} 7$	$1.237(2)$	$\mathrm{C} 1-\mathrm{C} 7$	$1.466(3)$
$\mathrm{N}-\mathrm{C} 2$	$1.362(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.501(3)$
$\mathrm{N}-\mathrm{C} 14$	$1.441(3)$		
$\mathrm{C} 2-\mathrm{N}-\mathrm{C} 14$	$124.1(2)$	$\mathrm{O}-\mathrm{C} 7-\mathrm{C} 8$	$116.9(2)$
$\mathrm{O}-\mathrm{C} 7-\mathrm{C} 1$	$122.0(2)$	$\mathrm{C} 1-\mathrm{C}-\mathrm{C} 8$	$121.2(2)$
$\mathrm{C} 6-\mathrm{Cl}-\mathrm{C} 7-\mathrm{O}$	$-163.8(2)$	$\mathrm{O}-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 13$	$41.3(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O}$	$13.6(3)$	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 13$	$-138.8(2)$
$\mathrm{C} 6-\mathrm{Cl}-\mathrm{C}-\mathrm{C} 8$	$16.3(3)$	$\mathrm{O}-\mathrm{C} 7-\mathrm{C}-\mathrm{C} 9$	$-133.3(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$-166.3(2)$	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$46.6(3)$

The unit cell and intensity data were collected on a Delft Instruments FAST diffractometer using the routines ENDEX, REFINE and MADONL in the MADNES software (Pflugrath \& Messerschmidt, 1989), and processed using ABSMAD (Karaulov, 1992); detailed procedures are described by Darr, Drake, Hursthouse \& Malik (1993). The H atoms were initially placed in calculated positions and thereafter allowed to ride on their attached C atoms, with common isotropic displacement parameters of 0.024 (9) (for non-methyl H atoms) and 0.044 (1) \AA^{2} (for methyl H atoms).

Program(s) used to solve structure: SIR92 (Altomare et al., 1994). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ZORTEP (Zsolnai, 1996).

The use of the EPSRC X-ray Crystallographic Service at the University of Wales, Cardiff, and the assistance of Neil S. Stewart of the Cambridge Crystallographic Data Centre are gratefully acknowledged.

Lists of atomic coordinates, displacement parameters, structure factors and complete geometry have been deposited with the IUCr (Reference: BM1125). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A. \& Polidori, G. (1994). J. Appl. Cryst. 27, 435.

Anisuzzaman, A. T. Md. (1995). PhD thesis. University of Strathclyde, Glasgow, Scotland.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Camerman, A. \& Camerman, N. (1972). J. Am. Chem. Soc. 94, 268272.

Darr, J. A., Drake, S. R., Hursthouse, M. B. \& Malik, K. M. A. (1993). Inorg. Chem. 32, 5704-5708.
Fleischer, E. B., Sung, N. \& Hawkinson, S. (1968). J. Phys. Chem. 72, 4311-4312.
Gavezzotti, A. \& Filippini, G. (1993). Acta Chim. Hung. 130, 205220.

Han, W. W., Yakatan, G. J. \& Maness, D. D. (1977). J. Pharm. Sci. 66, 573-577.
Karaulov, A. I. (1992). ABSMAD. Program for FAST Data Processing. University of Wales, Cardiff, Wales.
Kendrick, J. (1990). J. Chem. Soc. Faraday Trans. pp. 3995-4000.
Nakano, M., Inotsume, N., Kohri, N. \& Arita, T. (1979). Int. J. Pharm. 3, 195-204.
Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. \& Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 23532360.

Pflugrath, J. W. \& Messerschmidt, A. (1989). MADNES. Version of 11 September 1989. Distributed by Delft Instruments, Delft, The Netherlands.
Rowland, R. S. \& Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Zsolnai, L. (1996). ZORTEP. An Interactive ORTEP Program. University of Heidelberg, Germany.

Acta Cryst. (1997). C53, 477-480

The Dipeptide pGlu-Pro-NH2

Johan Wouters, Bernadette Norberg and Guy Evrard

Laboratoire de Chimie Moleculaire Structurale, Facultes Universitaires Notre-Dame de la Paix, 61 Rue de Bruxelles, B-5000 Namur, Belgium. E-mail: wouters@scf.fundp.ac.be
(Received 30 July 1996; accepted 26 November 1996)

Abstract

The crystal structure of the pGlu-Pro- NH_{2} dipeptide, cis-1-(5-oxo-L-prolyl)-L-prolinamide hydrate [cis-1-(5-oxo-L-prolyl)pyrrolidine-2-carboxamide hydrate], $\mathrm{C}_{10} \mathrm{H}_{15}-$ $\mathrm{N}_{3} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, has been determined in order to establish
the conformation of the pyrrolidine ring both in natural (L) proline (Pro) and in pyroglutamic acid (pGlu), a cyclic analogue of the the natural l-glutamate amino acid. The structure was solved by direct methods and refined by least-squares calculations to a final R value of 0.026 . While the pyrrolidine ring of the Pro residue adopts a twisted conformation, this ring is planar in the pGlu amino acid. The proline residue is in a cis orientation with respect to the peptide bond. Molecular cohesion is stabilized by a dense network of hydrogen bonds involving the free amine group of pGlu, the three O atoms of the carbonyl groups, the terminal carboxyprotective NH_{2} group and a water molecule.

Comment

pGlu-Pro- NH_{2}, (I), where pGlu stands for α-aminoglutaric acid lactam [p (yro)Glu, glutim(in)ic acid] crystallizes in space group $P 2_{1}$ with one molecule of dipeptide and one water molecule in the asymmetric unit. Its absolute configuration was assigned as l-pGlu and L-Pro. An analogue of the title compound, where Pro- NH_{2} is replaced by L-thiazolidine-4-carboxylic acid, which displays immunomodulant drug activity on CD4 and T-lymphocyte functions has been reported recently (Ayala, Bombieri, Perosino \& Stradi, 1995).

(I)

The molecular structure of (I) with the atomnumbering scheme is illustrated in Fig. 1. The three amide $\mathrm{C}-\mathrm{N}$ bond distances [C2-N6 1.335 (3), C7N9 1.330 (2) and C14—N16 1.327 (4) Å] have doublebond character indicating electronic delocalization with the adjacent carbonyl function. The $\mathrm{C}-\mathrm{O}$ bonds [C2-O1 1.226(3), C7-O8 1.233 (3) and C14-O15 1.228 (2) \AA] show a more marked double-bond character (Allen et al., 1987). The pyrrolidone ring adopts a quasi-planar conformation (r.m.s. deviation from the best plane through the atoms of the ring is $0.054 \AA$, with a maximum deviation of $-0.046 \AA$ for atom C 2). The prolyl ring has puckering parameters $\varphi(2)$ of $236.3(20)^{\circ}$ and $Q(2)$ of 0.076 (3) \AA (Cremer \& Pople, 1975), indicative of a 'twisted' conformation.

The acute angle between the planes defined by the prolyl and pyrrolidone rings is $62.4(2)^{\circ}$. The molecular structure of pGlu-Pro- NH_{2} is characterized by a cisoid geometry around the peptide bond for the terminal residue (Table 1).

The structure of the title compound is in good agreement with the structure reported recently by Ayala
et al. (1995), the r.m.s. deviation calculated on all 16 non-H atoms being $0.45 \AA$. Differences are mainly located at the pGlu ring, which is planar in the title structure and 'twisted' in the related one.

Molecular cohesion (Fig. 2) is achieved by intermolecular hydrogen-bonding interactions involving the free amine group of pGlu, the three O atoms of the carbonyl functions, the terminal carboxy-protective NH_{2} group and a water molecule (Table 2).

Fig. 1. The molecular structure and conformation of (I), together with the atomic numbering. Non-H atoms are represented by displacement ellipsoids at the 50% probability level.

Fig. 2. Crystal-packing diagram (dotted lines indicate hydrogen-bond interactions). H atoms have been omitted.

Experimental

A sample of the title compound was obtained from Bioproduct, Peptide Department, UCB s.a., 68 rue Berkendael, Bruxelles, Belgium.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} . \mathrm{H}_{2} \mathrm{O}$
$M_{r}=243.3$
Monoclinic
$P 2_{1}$
$a=10.154$ (2) \AA
$b=8.968$ (2) \AA
$c=6.749$ (2) \AA
$\beta=104.0$ (2) ${ }^{\circ}$
$V=596.3(3) \AA^{3}$
$Z=2$
$D_{x}=1.355 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
1249 measured reflections
1247 independent reflections 1202 reflections with
$I>2 \sigma(I)$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54178 \AA$
Cell parameters from 25 reflections
$\theta=30-40^{\circ}$
$\mu=0.887 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.2 \times 0.2 \times 0.1 \mathrm{~mm}$ Colourless

Refinement

Refinement on F^{2}
$R(F)=0.0256$
$w R\left(F^{2}\right)=0.0764$
$S=1.084$
1247 reflections
159 parameters
H atoms riding

$$
\begin{aligned}
& \begin{aligned}
w= & 1 /[
\end{aligned} \sigma^{2}\left(F_{o}^{2}\right)+(0.0496 P)^{2} \\
& \\
& \quad+0.0593 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.003
\end{aligned}
$$

$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$173.5(2)$	$\mathrm{C} 5-\mathrm{C} 7-\mathrm{N} 9-\mathrm{C} 10$	$0.9(3)$
$\mathrm{N} 6-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-8.5(3)$	$\mathrm{C} 7-\mathrm{N} 9-\mathrm{C} 10-\mathrm{C} 11$	$157.7(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$6.6(3)$	$\mathrm{C} 13-\mathrm{N} 9-\mathrm{C} 10-\mathrm{C} 11$	$-14.7(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 6$	$-2.7(3)$	$\mathrm{N} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$31.9(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 7$	$-121.5(2)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-37.5(2)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 6-\mathrm{C} 5$	$-174.7(2)$	$\mathrm{C} 7-\mathrm{N} 9-\mathrm{C} 13-\mathrm{C} 14$	$-62.2(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 6-\mathrm{C} 5$	$7.2(2)$	$\mathrm{C} 10-\mathrm{N} 9-\mathrm{C} 13-\mathrm{C} 14$	$111.1(2)$
$\mathrm{C} 7-\mathrm{C} 5-\mathrm{N} 6-\mathrm{C} 2$	$115.8(2)$	$\mathrm{C} 7-\mathrm{N} 9-\mathrm{C} 13-\mathrm{C} 12$	$178.44(15)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 6-\mathrm{C} 2$	$-2.9(2)$	$\mathrm{C} 10-\mathrm{N} 9-\mathrm{C} 13-\mathrm{C} 12$	$-8.3(2)$
$\mathrm{N} 6-\mathrm{C} 5-\mathrm{C} 7-\mathrm{O} 8$	$-11.3(2)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{N} 9$	$28.0(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 7-\mathrm{O} 8$	$102.9(2)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-90.3(2)$
$\mathrm{N} 6-\mathrm{C} 5-\mathrm{C} 7-\mathrm{N} 9$	$170.6(2)$	$\mathrm{N} 9-\mathrm{C} 13-\mathrm{C} 14-\mathrm{O} 15$	$-43.7(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 7-\mathrm{N} 9$	$-75.2(2)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{O} 15$	$70.3(2)$
$\mathrm{O} 8-\mathrm{C} 7-\mathrm{N} 9-\mathrm{C} 13$	$-5.0(3)$	$\mathrm{N} 9-\mathrm{C} 13-\mathrm{C} 14-\mathrm{N} 16$	$139.9(2)$
$\mathrm{C} 5-\mathrm{C} 7-\mathrm{N} 9-\mathrm{C} 13$	$173.2(1)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{N} 16-106.1(2)$	
$\mathrm{O} 8-\mathrm{C} 7-\mathrm{N} 9-\mathrm{C} 10$	$-177.1(2)$		

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

D-H. ${ }^{\text {d }}$ A	D-H	H. . A	D . - A	D-H. . A
N6-H6. ${ }^{\text {O }} 17^{\text {i }}$	0.763	2.365	3.126 (4)	175.3
N16-H16A . . O8 ${ }^{\text {in }}$	0.795	2.102	2.866 (3)	161.2
N16-H16B. $\mathrm{O}^{\text {O }} 7^{\text {iiii }}$	0.943	2.089	2.985 (5)	158.0
O17-H17A $\cdots \mathrm{Ol}^{\text {iv }}$	0.927	1.920	2.840 (3)	172.1
O17-H17B..OO15	0.888	1.972	2.859 (3)	177.2

Symmetry codes: (i) $x, y-1, z$; (ii) $1-x, \frac{1}{2}+y, 1-z$; (iii) $1-x, y-\frac{1}{2}, 1-z$; (iv) $2-x, \frac{1}{2}+y, 1-z$.

Correction for background, decay, Lorentz and polarization factors were included in the data reduction. The structure was solved by direct methods using SHELXS86 (Sheldrick, 1990) and resulted in reliable positions for all non-H atoms. The initial model was refined by least-squares techniques with SHELXL93 (Sheldrick, 1993). Non-H atoms were refined with anisotropic displacement factors. H atoms potentially involved in hydrogen bonding (i.e. those on N6, N16 and O17) were located by Fourier difference synthesis while the others were calculated. The positions of all the H atoms were refined using the riding model method. PLATON94 (Spek, 1994) was used for the geometry analysis of the structure. Most machine calculations were conducted on an IBM RISC6000. The coordinates of 3-(5-oxo-L-prolyl)-L-thia-zolidine-4-carboxylic acid (Ayala et al., 1995) were inverted in order to generate the right absolute configuration. Comparison of the structures was performed using the in-house KEMIT program (Vanderveken \& Vercauteren, 1991).

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: PLATON94.

JW thanks the National Fundation for Scientific Research (FNRS Belgium) for his Senior Research Assistant position.

[^0]
References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
Ayala, D., Bombieri, G., Perosino, T. \& Stradi, R. (1995). Acta Cryst. C51, 473-475.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1994). PLATON94. Program for the Automated Analysis of Molecular Geometry. University of Utrecht, The Netherlands.
Vanderveken, D. \& Vercauteren, D. P. (1991). KEMIT. Facultes N.-D. de la Paix, Namur, Belgium.

Acta Cryst. (1997). C53, 480-482

Cholamide Dihydrate

Mark C. Wahle, ${ }^{a}$ Phillip E. Fanwick ${ }^{b}$ and Stephen R. ByRn ${ }^{a}$
${ }^{a}$ Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, W. Lafayette, IN 47907-1333, USA, and ${ }^{b}$ Department of Chemistry, Purdue University, W. Lafayette, IN 47907, USA. E-mail: spike@sparky.pharmacy.purdue.edu
(Received 27 August 1996; accepted 20 November 1996)

Abstract

The crystal structure of cholamide dihydrate ($3 \alpha, 7 \alpha$,12α-trihydroxy- 5β-cholan-24-amide dihydrate, $\mathrm{C}_{24} \mathrm{H}_{41^{-}}$ $\mathrm{NO}_{4} .2 \mathrm{H}_{2} \mathrm{O}$), recrystallized from ethyl acetate by slow evaporation, has been determined. This structure is the first reported crystal structure of cholamide solvated solely with water.

Comment

Polymorphism, the ability of a compound to crystallize in different forms, is quite common (Byrn, 1982). Steroids are just one class of compounds which display polymorphic capabilities, often crystallizing into different solvated forms. One such group of steroids is cholic acid $(3 \alpha, 7 \alpha, 12 \alpha$-trihydroxy$5 \beta$-cholan-24-oic acid) and its derivatives methyl cholate $(3 \alpha, 7 \alpha, 12 \alpha$-trihydroxy- 5β-cholan-24-oic acid methyl ester), sodium cholate (sodium $3 \alpha, 7 \alpha, 12 \alpha$-tri-hydroxy-5 β-cholan-24-oate), cholamide ($3 \alpha, 7 \alpha, 12 \alpha$-tri-hydroxy-5 β-cholan-24-amide), N-methylcholamide (N -methyl-3 $2,7 \alpha, 12 \alpha$-trihydroxy-5 β-cholan-24-amide) and N, N-dimethylcholamide (N, N-dimethyl- $3 \alpha, 7 \alpha, 12 \alpha$-tri-hydroxy-5 β-cholan-24-amide). Many solvated structures have been reported for cholic acid (Lessinger, 1982; Lessinger \& Low, 1993; Miki et al., 1988; Johnson \& Schaefer, 1972; Jones \& Nassimbeni, 1990; Miki, Kasai, Shibakami, Takemoto \& Miyata, 1991; Nakano, Sada \& Miyata, 1994, 1996; Caira, Nassimbeni \&

Scott, 1993, 1994a,b, 1996; Shibakami \& Sekiya, 1994; Scott, 1995). Recently, studies have expanded to include methyl cholate (Norton \& Haner, 1965; Miyata et al., 1987; Miki et al., 1992; Wahle \& Byrn, 1996a), sodium cholate (Norton \& Haner, 1965; Cobbledick \& Einstein, 1980; Wahle, Stowell \& Byrn, 1996; Wahle \& Byrn, 1996b), cholamide (Sada, Kondo, Miyata, Tamada \& Miki, 1993; Sada, Kondo, Miyata \& Miki, 1994; Wahle \& Byrn, 1996c), N-methylcholamide (Sada \& Miyata, 1996; Wahle \& Byrn, 1997) and N, N-dimethylcholamide (Wahle \& Byrn, 1997). Presently, the only crystal structures reported for cholamide are solvated with organic solvents (Sada et al., 1993, 1994; Sada, Matsuura \& Miyata, 1996) or a mix of organic solvent and water (Wahle \& Byrn, 1996c). Here, we continue our examination of cholamide by reporting the first form solvated solely with water, i.e. cholamide dihydrate ($X=$ $\mathrm{NH}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$).

The ORTEPII (Johnson, 1976) diagram for cholamide dihydrate is presented in Fig. 1. The rings have a geometry similar to the structures of the other cholamide derivatives reported to date, with a cis ring juncture for the A / B rings and trans ring junctures for the B / C and C / D rings. When the dihydrate structure is overlaid using a least-squares fit with the 2-propanolate structure (Sada et al., 1994) and the acetonitrile dihydrate structure (Wahle \& Byrn, 1996c), the four steroid rings are quite similar, while the side chains differ considerably. Various torsion angles in the side chain differ considerably from one structure to another (Table 1). The steroid molecules pack in a twisted-layer pattern, with a tunnel of water molecules running parallel to the b axis. Fig. 2 presents the packing diagram drawn using QUANTA4.1 (Molecular Simulations Incorporated, 1995).

Fig. 1. ORTEPII (Johnson, 1976) diagram of cholamide dihydrate showing 50% probability displacement ellipsoids for non-H atoms. The water molecules are also included.

[^0]: Lists of atomic coordinates, displacement parameters, structure factors and complete geometry have been deposited with the IUCr (Reference: DU1169). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

